Two new genAI tests (Llama 3.1 8B, Flux.1) align with production stacks as multi-node results climb. NVIDIA posts many fastest times; University of Florida, Wiwynn, and Datacrunch expand the ecosystem.
Allyson Klein talks with author and Google/Intel alum Wanjiku Kamau on moving past AI skepticism, learning fast, and using new tools with intention—so readers start where they are and explore AI with hope.
AI racks are blowing past air’s limits. Here’s a frank framework for when cold plate still wins, when it fails, and how to plan the pivot to immersion—without stranding today’s investments.
On Day 1 of KubeCon + CloudNativeCon Atlanta, CNCF unveiled Kubernetes AI Conformance to make workloads portable—arriving as inference surges to ~1.33 quadrillion tokens/month across Google’s systems.
FinTech expert Anusha Nerella shares insights on staying ahead of fraud, navigating regulation, and building collaborative teams to scale responsible AI across the financial services sector.
Modern software-defined cars blend multiple links—CAN/LIN, MIPI, SerDes, and Ethernet/TSN—to shrink wiring and cost, manage EMI, and deliver reliable, deterministic timing from sensors to actuators.
As hyperscalers grapple with unprecedented chip density, the 159-year-old company known for high performance lubricants is engineering fluids that enable immersion cooling at scale.
As AI inference, edge, and autonomous systems outpace legacy networks, this playbook shows how to combine fiber, RF, FSO, and satellite to tame digital asymmetry and build resilient AI connectivity.
Inside Equinix and Solidigm’s playbook for turning data centers into adaptive, AI-ready platforms that balance sovereignty, performance, efficiency, and sustainability across hybrid multicloud.
Physical AI is leaving the lab for the line. Datara AI’s edge-first data-loop playbook—real-time inference, disciplined updates, and human-centered rollout—turns pilots into reliable, scalable uptime.
AI now informs credit, healthcare, and fraud decisions. This piece unpacks US and EU rules, core principles, and how Responsible AI governance can be a competitive edge, not just compliance.
Cloud waste, FinOps, and sustainability goals are reshaping data engineering. Teams that design efficient stacks, track cost and energy, and treat constraints as features will ship more with less.
Hedgehog CEO Marc Austin joins Data Insights to break down open-source, automated networking for AI clusters—cutting cost, avoiding lock-in, and keeping GPUs fed from training to inference.
From SC25 in St. Louis, Nebius shares how its neocloud, Token Factory PaaS, and supercomputer-class infrastructure are reshaping AI workloads, enterprise adoption, and efficiency at hyperscale.
Runpod head of engineering Brennen Smith joins a Data Insights episode to unpack GPU-dense clouds, hidden storage bottlenecks, and a “universal orchestrator” for long-running AI agents at scale.
Billions of customer interactions during peak seasons expose critical network bottlenecks, which is why critical infrastructure decisions must happen before you write a single line of code.
Recorded at #OCPSummit25, Allyson Klein and Jeniece Wnorowski sit down with Giga Computing’s Chen Lee to unpack GIGAPOD and GPM, DLC/immersion cooling, regional assembly, and the pivot to inference.
Durgesh Srivastava unpacks a data-loop approach that powers reliable edge inference, captures anomalies, and encodes technician know-how so robots weld, inspect, and recover like seasoned operators.
Hedgehog CEO Marc Austin joins Data Insights to break down open-source, automated networking for AI clusters—cutting cost, avoiding lock-in, and keeping GPUs fed from training to inference.
From SC25 in St. Louis, Nebius shares how its neocloud, Token Factory PaaS, and supercomputer-class infrastructure are reshaping AI workloads, enterprise adoption, and efficiency at hyperscale.
Runpod head of engineering Brennen Smith joins a Data Insights episode to unpack GPU-dense clouds, hidden storage bottlenecks, and a “universal orchestrator” for long-running AI agents at scale.
Billions of customer interactions during peak seasons expose critical network bottlenecks, which is why critical infrastructure decisions must happen before you write a single line of code.
Recorded at #OCPSummit25, Allyson Klein and Jeniece Wnorowski sit down with Giga Computing’s Chen Lee to unpack GIGAPOD and GPM, DLC/immersion cooling, regional assembly, and the pivot to inference.
Durgesh Srivastava unpacks a data-loop approach that powers reliable edge inference, captures anomalies, and encodes technician know-how so robots weld, inspect, and recover like seasoned operators.